Multi-task global optimization-based method for vascular landmark detection

Comput Med Imaging Graph. 2024 Jun:114:102364. doi: 10.1016/j.compmedimag.2024.102364. Epub 2024 Mar 1.

Abstract

Vascular landmark detection plays an important role in medical analysis and clinical treatment. However, due to the complex topology and similar local appearance around landmarks, the popular heatmap regression based methods always suffer from the landmark confusion problem. Vascular landmarks are connected by vascular segments and have special spatial correlations, which can be utilized for performance improvement. In this paper, we propose a multi-task global optimization-based framework for accurate and automatic vascular landmark detection. A multi-task deep learning network is exploited to accomplish landmark heatmap regression, vascular semantic segmentation, and orientation field regression simultaneously. The two auxiliary objectives are highly correlated with the heatmap regression task and help the network incorporate the structural prior knowledge. During inference, instead of performing a max-voting strategy, we propose a global optimization-based post-processing method for final landmark decision. The spatial relationships between neighboring landmarks are utilized explicitly to tackle the landmark confusion problem. We evaluated our method on a cerebral MRA dataset with 564 volumes, a cerebral CTA dataset with 510 volumes, and an aorta CTA dataset with 50 volumes. The experiments demonstrate that the proposed method is effective for vascular landmark localization and achieves state-of-the-art performance.

Keywords: Anatomical landmark detection; Deep learning; Global optimization; Multi-task network; Vascular structure.

MeSH terms

  • Regression Analysis*