EPM algorithm: A stepwise approach to accessory pathway localization in ventricular pre-excitation

J Electrocardiol. 2024 Feb 28:84:1-8. doi: 10.1016/j.jelectrocard.2024.02.007. Online ahead of print.

Abstract

Background: Accurate estimation of accessory pathway (AP) localization in patients with ventricular pre-excitation or Wolff-Parkinson-White (WPW) syndrome remains a diagnostic challenge. Existing algorithms have contributed significantly to this area, but alternative algorithms can offer additional perspectives and approaches to AP localization.

Objective: This study introduces and evaluates the diagnostic accuracy of the EPM algorithm in AP localization, comparing it with established algorithms Arruda and EASY.

Methods: A retrospective analysis was conducted on 138 patients from Hospital São Paulo who underwent catheter ablation. Three blinded examiners assessed the EPM algorithm's diagnostic accuracy against the Arruda and EASY algorithms. The gold standard for comparison was the radioscopic position of the AP where radiofrequency ablation led to pre-excitation disappearance on the ECG.

Results: EPM showed a diagnostic accuracy of 51.45%, closely aligning with Arruda (53.29%) and EASY (44.69%). Adjacency accuracy for EPM was 70.67%, with Arruda at 66.18% and EASY at 72.22%. Sensitivity for EPM in distinguishing left vs. right APs was 95.73%, with a specificity of 74.33%. For identifying septal vs. lateral right APs, EPM sensitivity was 82.79% with a specificity of 46.15%. These measures were comparable to those of Arruda and EASY. Inter-observer variability was excellent for EPM, with Kappa statistics over 0.9.

Conclusion: The EPM algorithm emerges as a reliable tool for AP localization, offering a systematic approach beneficial for therapeutic decision-making in electrophysiology. Its comparable diagnostic accuracy and excellent inter-observer variability underscore its potential clinical applicability. Future research may further validate its efficacy in a broader clinical setting.

Keywords: Accessory pathways; Algorithm; Electrocardiography; Electrophysiology; Ventricular pre-excitation.