Hydrochemical systematics and isotope (δ18O, δD and 3H) variations of aquifer system of southern Bengal Basin: implications for groundwater pollution

Environ Sci Pollut Res Int. 2024 Apr;31(16):23858-23875. doi: 10.1007/s11356-024-32692-5. Epub 2024 Mar 2.

Abstract

Hydrogeological, hydrochemical and isotopic traits of the groundwater in the Quaternary aquifer system in an urban-periurban locality within and encircling the Kolkata-Howrah twin city in the south Bengal Basin have been synthesised to explain the present- and paleo-hydrological processes, surface and groundwater interaction and mixing dynamics of contamination of groundwater. Rock-weathering, evaporation, ion-exchange and active mineral dissolution are the key processes commanding the groundwater chemistry. Freshwater flushing from the recharge zones had thinned the entrapped sea water which has generated the present-day brackish water by a non-uniform fusion. The best-fit line of the plots of δD and δ18O of groundwater samples displays a slope lower than that of local meteoric water line (LMWL) and global meteoric water line (GMWL) which hints that isotopic constitution of the groundwater of the present area is primarily formed by evaporation before or in the recharging process. A wide range of δ18O values in groundwater suggests that these waters are not blended enough to remove dissimilarities in isotope configuration of recharge water. This also suggests that many groundwaters are a result of mixing of present-day recharge and an older integrant recharged under previously cooler climatic conditions. The groundwater samples are more depleted of oxygen at the shallower level. The depleted samples cluster around the Tolly's nala (canal) where upper aquitard is missing or < 10-m thick. The tritium values range between 0.70 and 15.02 which indicate the occurrence of 'sub-modern', 'a mix of modern and sub-modern water' and 'modern water'. It indicates mingling of isotope-depleted water from the Hugli River by means of Tolly's canal with relatively less-depleted groundwater of Kolkata's late Pleistocene aquifer. The tritium values and Cl/Br ratio of groundwater samples adjoining Tolly's canal and elsewhere refer the direct infiltration of 'modern wastewater and freshwater' which mixes with the 'sub-modern water' in the aquifer system.

Keywords: Bengal Basin; Groundwater; Hydrological processes; Recharge sources; Stable and radioactive isotopes; Wastewater.

MeSH terms

  • Environmental Monitoring*
  • Groundwater*
  • Isotopes / analysis
  • Tritium
  • Water

Substances

  • Tritium
  • Isotopes
  • Water