Mixed-Transducer Micro-Origami for Efficient Motion and Decoupled Sensing

Small. 2024 Mar 1:e2400059. doi: 10.1002/smll.202400059. Online ahead of print.

Abstract

This work introduces a mixed-transducer micro-origami to achieve efficient vibration, controllable motion, and decoupled sensing. Existing micro-origami systems tend to have only one type of transducer (actuator/sensor), which limits their versatility and functionality because any given transducer system has a narrow range of advantageous working conditions. However, it is possible to harness the benefit of different micro-transducer systems to enhance the performance of functional micro-origami. More specifically, this work introduces a micro-origami system that can integrate the advantages of three transducer systems: strained morph (SM) systems, polymer based electro-thermal (ET) systems, and thin-film lead zirconate titanate (PZT) systems. A versatile photolithography fabrication process is introduced to build this mixed-transducer micro-origami system, and their performance is investigated through experiments and simulation models. This work shows that mixed-transducer micro-origami can achieve power efficient vibration with high frequency, large vibration ranges, and little degradation; can produce decoupled folding motion with good controllability; and can accomplish simultaneous sensing and actuation to detect and interact with external environments and small-scale samples. The superior performance of mixed-transducer micro-origami systems makes them promising tools for micro-manipulation, micro-assembly, biomedical probes, self-sensing metamaterials, and more.

Keywords: electro-thermal actuator; lead zirconate titanate; micro-origami; microelectromechanical systems; strained morph.