KIAA1429-mediated RXFP1 attenuates non-small cell lung cancer tumorigenesis via N6-methyladenosine modification

Cancer Biomark. 2024 Feb 7. doi: 10.3233/CBM-230188. Online ahead of print.

Abstract

Background: N6-methyladenosine (m6A) modification has been associated with non-small cell lung cancer (NSCLC) tumorigenesis.

Objectives: This study aimed to determine the functions of Vir-like m6A methyltransferase-associated (KIAA1429) and relaxin family peptide receptor 1 (RXFP1) in NSCLC.

Methods: A quantitative real-time polymerase chain reaction was used to analyze the mRNA levels of KIAA1429 and RXFP1 in NSCLC. After silencing KIAA1429 or RXFP1 in NSCLC cells, changes in the malignant phenotypes of NSCLC cells were assessed using cell counting kit-8, colony formation, and transwell assays. Finally, the m6A modification of RXFP1 mediated by KIAA1429 was confirmed using luciferase, methylated RNA immunoprecipitation, and western blot assays.

Results: KIAA1429 and RXFP1 were upregulated and downregulated in NSCLC, respectively. Silencing of KIAA1429 attenuated the viability, migration, and invasion of NSCLC cells, whereas silencing of RXFP1 showed the opposite function in NSCLC cells. Moreover, RXFP1 expression was inhibited by KIAA1429 via m6A-modification. Therefore, silencing RXFP1 reversed the inhibitory effect of KIAA1429 knockdown in NSCLC cells.

Conclusion: Our findings confirmed that the KIAA1429/RXFP1 axis promotes NSCLC tumorigenesis. This is the first study to reveal the inhibitory function of RXFP1 in NSCLC via KIAA1429-mediated m6A-modification. These findings may help identify new biomarkers for targeted NSCLC therapy.

Keywords: KIAA1429; N6-methyladenosine; RXFP1; non-small cell lung cancer.