Adiponectin attenuates H2O2-induced apoptosis in chicken skeletal myoblasts through the lysosomal-mitochondrial axis

In Vitro Cell Dev Biol Anim. 2024 Feb 26. doi: 10.1007/s11626-024-00857-8. Online ahead of print.

Abstract

Adiponectin has previously been investigated for exerting its protective effect against myocardial injury through anti-apoptotic and anti-oxidative actions. Therefore, the present study aimed to investigate the nature and mechanism of adiponectin inhibition of H2O2-induced apoptosis in chicken skeletal myoblasts. Skeletal muscle satellite cells were differentiated and assigned into three groups. Group C was on the blank control group, group H was stimulated with the H2O2 (500 μmol/L, 4 h) alone group, group A + H was pre-treated with adiponectin (10 μg/mL, 24 h) and stimulated with the H2O2 (500 μmol/L, 4 h) group. Cytotoxicity inhibited by adiponectin was evaluated by the CCK-8 assay. The degree of apoptosis and oxidative damage was investigated by the TdT-mediated dUTP nick end labeling (TUNEL) and reactive oxygen species (ROS) staining assays. Oxidative stress was assessed by evaluating lipid peroxidation, superoxide dismutase, and reduced glutathione. Acridine orange (AO) staining detected lysosomal membrane permeability. The changes in mitochondrial membrane potential (MMP) were analyzed using 5,5,6,6'-tetrachloro-1,1,3,3-tetraethylimidacarbocyanine iodide (JC-1) dye under a fluorescence microscope. The lysosomal function, mitochondrial function, and apoptosis-related mRNA and protein expression levels were quantified by real-time quantitative PCR and western blot, respectively. The results suggested that adiponectin treatment attenuated H2O2-induced cytotoxicity and oxidative stress in skeletal myoblasts. Compared with H2O2 treatment, TUNEL and ROS staining demonstrated lower apoptosis upon adiponectin treatment. AO staining confirmed the amelioration of lysosomal membrane damage, and JC-1 staining revealed an increase in mitochondrial membrane potential after adiponectin treatment. At the molecular level, adiponectin treatment inhibited the expression of the lysosomal apoptotic factors cathepsin B, chymotrypsin B, and the mitochondrial apoptotic pathway cytochrome-c (cyt-c) and caspase-8; decreased the apoptotic marker gene Bax; and increased the expression of the anti-apoptotic marker gene Bcl-2. Adiponectin treatment attenuated H2O2-induced apoptosis in skeletal myoblasts, possibly by inhibiting oxidative stress and apoptosis through the lysosomal-mitochondrial axis.

Keywords: Adiponectin; Apoptosis; Lysosomal; Mitochondrial; Skeletal myoblasts.