Qudit-based high-dimensional controlled-not gate

Opt Lett. 2024 Mar 1;49(5):1229-1232. doi: 10.1364/OL.518336.

Abstract

High-dimensional quantum systems expand quantum channel capacity and information storage space. By implementing high-dimensional quantum logic gates, the speed of quantum computing can be practically enhanced. We propose a deterministic 4 × 4-dimensional controlled-not (CNOT) gate for a hybrid system without ancillary qudits required, where the spatial and polarization states of a single photon serve as a control qudit of four dimensions, whereas two electron-spin states in nitrogen-vacancy (NV) centers act as a four-dimensional target qudit. As the control qudits are easily operated employing simple optical elements and the target qudits are available for storage, the CNOT gate works in a deterministic way, and it can be flexibly extended to n × n-dimensional (n > 4) quantum gates for other hybrid systems or different photonic degrees of freedoms. The efficiency and fidelity of the CNOT gate are analyzed aligning with current technological capabilities, finding that they have satisfactory performances.