Large-Area Conductive MOF Ultrathin Film Controllably Integrating Dinuclear-Metal Sites and Photosensitizers to Boost Photocatalytic CO2 Reduction with H2O as an Electron Donor

J Am Chem Soc. 2024 Mar 13;146(10):6893-6904. doi: 10.1021/jacs.3c14036. Epub 2024 Mar 1.

Abstract

Owing to the electrical conductivity and periodic porosity, conductive metal-organic framework (cMOF) ultrathin films open new perspectives to photocatalysis. The space-selective assembly of catalytic sites and photosensitizers in/on cMOF is favorable for promoting the separation of photogenerated carriers and mass transfer. However, the controllable integration of functional units into the cMOF film is rarely reported. Herein, via the synergistic effect of steric hindrance and an electrostatic-driven strategy, the dinuclear-metal molecular catalysts (DMC) and perovskite (PVK) quantum dot photosensitizers were immobilized into channels and onto the surface of cMOF ultrathin films, respectively, affording [DMC@cMOF]-PVK film photocatalysts. In this unique heterostructure, cMOF not only facilitated the charge transfer from PVK to DMC but also guaranteed mass transfer. Using H2O as an electron donor, [DMC@cMOF]-PVK realized a 133.36 μmol·g-1·h-1 CO yield in photocatalytic CO2 reduction, much higher than PVK and DMC-PVK. Owing to the excellent light transmission of films, multilayers of [DMC@cMOF]-PVK were integrated to increase the CO yield per unit area, and the 10-layer device realized a 1115.92 μmol·m-2 CO yield in 4 h, which was 8-fold higher than that of powder counterpart. This work not only lightens the development of cMOF-based composite films but also paves a novel avenue for an ultrathin film photocatalyst.