Highly Sensitive Labeling, Clickable Functionalization, and Glycoengineering of the MUC1 Neighboring System

JACS Au. 2024 Feb 8;4(2):828-836. doi: 10.1021/jacsau.3c00803. eCollection 2024 Feb 26.

Abstract

This study introduces a novel wash-type affinity-primed proximity labeling (WAPL) strategy for labeling and surface engineering of the MUC1 protein neighboring system. The strategy entails the utilization of peroxidase in conjunction with a MUC1-selective aptamer, facilitating targeted binding to MUC1 and inducing covalent labeling of the protein neighboring system. This study reveals a novel finding that the WAPL strategy demonstrates superior labeling efficiency in comparison to nonwash-type affinity-primed proximity labeling, marking the first instance of such observations. The WAPL strategy provides signal amplification by converting a single recognition event into multiple covalent labeling events, thereby improving the detection sensitivity for subtle changes in MUC1. The WAPL platform employs two levels of labeling upgrades, modifying the biotin handles of the conventional labeling substrate, biotin-phenol. The first level involves a range of clickable molecules, facilitating dibenzoazacyclooctynylation, alkynylation, and trans-cyclooctenylation of the protein neighboring system. The second level utilizes lactose as a post-translational modification model, enabling rapid and reliable glycoengineering of the MUC1 neighboring system while remaining compatible with cell-based assays. The implementation of the WAPL strategy in protein neighboring systems has resulted in the establishment of a versatile platform that can effectively facilitate diverse monitoring and regulation techniques. This platform offers valuable insights into the regulation of relevant signaling pathways and promotes the advancement of novel therapeutic approaches, thereby bringing substantial implications for human health.