Mechanisms of anaerobic treatment of sulfate-containing organic wastewater mediated by Fe0 under different initial pH values

Bioprocess Biosyst Eng. 2024 Mar;47(3):417-427. doi: 10.1007/s00449-024-02974-w. Epub 2024 Feb 29.

Abstract

The anaerobic treatment of sulfide-containing organic wastewater (SCOW) is significantly affected by pH, causing dramatic decrease of treatment efficiency when pH deviates from its appropriate range. Fe0 has proved as an effective strategy on mitigating the impact of pH. However, systematic analysis of the influence mechanism is still lacking. To fill this gap, the impact of different initial pH values on anaerobic treatment efficiency of SCOW with Fe0 addition, the change of fermentation type and methanogens, and intra-extracellular electron transfer were explored in this study. The results showed that Fe0 addition enhanced the efficacy of anaerobic treatment of SCOW at adjusted initial pH values, especially at pH 6. Mechanism analysis showed that respiratory chain-related enzymes and electron shuttle secretion and resistance reduction were stimulated by soluble iron ions generated by Fe0 at pH 6, which accelerated intra-extracellular electron transfer of microorganisms, and ultimately alleviated the impact of acidic pH on the system. While at pH 8, Fe0 addition increased the acetogenic bacteria abundance, as well as optimized the fermentation type and improved the F420 coenzyme activity, resulting in the enhancement of treatment efficiency in the anaerobic system and remission of the effect of alkaline pH on the system. At the neutral pH, Fe0 addition had both advantages as stimulating the secretion of respiratory chain and electron transfer-related enzymes at pH 6 and optimizing the fermentation type pH 8, and thus enhanced the treatment efficacy. This study provides important insights and scientific basis for the application of new SCOW treatment technologies.

Keywords: Anaerobic treatment; Fe0; Intra-extracellular electron transfer; Methanogenic bacteria; Sulfate-containing organic wastewater.

MeSH terms

  • Anaerobiosis
  • Bioreactors
  • Hydrogen-Ion Concentration
  • Sewage / microbiology
  • Sulfates*
  • Sulfides
  • Wastewater*

Substances

  • Wastewater
  • Sulfates
  • Sulfides
  • Sewage