Effectiveness of Rhenium(I)-diselenoether Low Doses in a Triple-negative Breast Cancer Chicken Embryo Model

Anticancer Res. 2024 Mar;44(3):941-951. doi: 10.21873/anticanres.16889.

Abstract

Background/aim: Rhenium(I)-diselenoether (Re-diSe) is a promising anticancer agent composed of one rhenium and two selenium atoms. Its effectiveness was established in inhibiting cancer cells while maintaining low toxicity toward normal cells at a 5 μM dose for 120 hours in MDA-MB-231 cells. In MDA-MB-231 breast tumor-bearing mice, anti-tumor and anti-metastatic effects were observed at a 10 mg/kg dose. However, contradictory results were observed in the 4T1 breast cancer model, where a dose of 60 mg/kg had a pro-tumor effect. To address these discrepancies, the efficacy of Re-diSe at the effective 10 mg/kg dose was validated in a transplanted MDA-MB-231 breast tumor model using the chicken chorioallantoic membrane assay.

Materials and methods: MDA-MB-231 cancer cells were xenografted onto the chicken chorioallantoic membrane (CAM), and daily drug administration was carried out for nine days at doses of 0.1, 1, and 10 mg/kg. At the study's conclusion, a standard histological analysis was conducted.

Results: The low dose of 0.1 mg/kg showed a significant reduction in tumor weights compared to controls. The 1 mg/kg dose resulted in an increased inflammation score but did not induce a significant difference in tumor weights compared to the 0.1 mg/kg dose. Notably, at the 10 mg/kg dose, six out of 11 treated embryos displayed no visible signs of tumors. These tumors exhibited extensive tumor necrosis and significant infiltration by inflammatory cells.

Conclusion: In this particular model, the anticancer efficacy of Re-diSe was achieved at the low dose of 0.1 mg/kg. The higher dose of 10 mg/kg, while eliminating visible tumors, might have immune-mediated effects, as indicated by substantial tumor necrosis and infiltration by inflammatory cells. Overall, this study successfully demonstrated the effectiveness of Re-diSe as an anticancer agent.

Keywords: Rhenium; breast cancer; chicken embryo model; dose-effect; inflammation; selenium.

MeSH terms

  • Animals
  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Breast Neoplasms* / drug therapy
  • Cell Line, Tumor
  • Cell Proliferation
  • Chick Embryo
  • Chickens
  • Female
  • Humans
  • Mammary Neoplasms, Animal* / drug therapy
  • Mice
  • Necrosis
  • Rhenium* / pharmacology
  • Triple Negative Breast Neoplasms* / drug therapy

Substances

  • Rhenium
  • Antineoplastic Agents