Spatiotemporal investigation of near-surface CH4 and factors influencing CH4 over South, East, and Southeast Asia

Sci Total Environ. 2024 Apr 20:922:171311. doi: 10.1016/j.scitotenv.2024.171311. Epub 2024 Feb 28.

Abstract

Methane (CH4) is the second most abundant greenhouse gas after CO2, which plays the most important role in global and regional climate change. To explore the long-term spatiotemporal variations of near-surface CH4, datasets were extracted from Greenhouse gases Observing SATellite (GOSAT), and the Copernicus Atmospheric Monitoring Service (CAMS) reanalyzed datasets from June 2009 to September 2020 over South, East, and Southeast Asia. The accuracy of near-surface CH4 from GOSAT and CAMS was verified against surface observatory stations available in the study region to confirm both dataset applicability and results showed significant correlations. Temporal plots revealed continuous inflation in the near-surface CH4 with a significant seasonal and monthly variation in the study region. To explore the factors affecting near-surface CH4 distribution, near-surface CH4 relationship with anthropogenic emission, NDVI data, wind speed, temperature, precipitation, soil moisture, and relative humidity were investigated. The results showed a significant contribution of anthropogenic emissions with near-surface CH4. Regression and correlation analysis showed a significant positive correlation between NDVI data and near-surface CH4 from GOSAT and CAMS, while a significant negative correlation was found between wind and near-surface CH4. In the case of temperature, soil moisture, and near-surface CH4 from GOSAT and CAMS over high CH4 regions of the study area showed a significant positive correlation. However significant negative correlations were found between precipitation and relative humidity with GOSAT and CAMS datasets over high CH4 regions in South, East, and Southeast Asia. Moreover, these climatic factors showed no significant correlation within the low near-surface CH4 areas in our study region. Our study results showed that anthropogenic emissions, NDVI data, wind speed, temperature, precipitation, soil moisture, and humidity could significantly affect the near-surface CH4 over South, East, and Southeast Asia.

Keywords: Anthropogenic emissions; Climatic factors; GOSAT and CAMS; NDVI; Satellite datasets; Wind.