Gamma delta T cells in acute myeloid leukemia: biology and emerging therapeutic strategies

J Immunother Cancer. 2024 Feb 27;12(2):e007981. doi: 10.1136/jitc-2023-007981.

Abstract

γδ T cells play an important role in disease control in acute myeloid leukemia (AML) and have become an emerging area of therapeutic interest. These cells represent a minor population of T lymphocytes with intrinsic abilities to recognize antigens in a major histocompatibility complex-independent manner and functionally straddle the innate and adaptive immunity interface. AML shows high expression of phosphoantigens and UL-16 binding proteins that activate the Vδ2 and Vδ1 subtypes of γδ T cells, respectively, leading to γδ T cell-mediated cytotoxicity. Insights from murine models and clinical data in humans show improved overall survival, leukemia-free survival, reduced risk of relapse, enhanced graft-versus-leukemia effect, and decreased graft-versus-host disease in patients with AML who have higher reconstitution of γδ T cells following allogeneic hematopoietic stem cell transplantation. Clinical trials leveraging γδ T cell biology have used unmodified and modified allogeneic cells as well as bispecific engagers and monoclonal antibodies. In this review, we discuss γδ T cells' biology, roles in cancer and AML, and mechanisms of immune escape and antileukemia effect; we also discuss recent clinical advances related to γδ T cells in the field of AML therapeutics.

Keywords: Hematologic Neoplasms; Immunity, Cellular; Immunotherapy, Adoptive.

Publication types

  • Review

MeSH terms

  • Animals
  • Biology
  • Graft vs Host Disease*
  • Humans
  • Intraepithelial Lymphocytes* / metabolism
  • Leukemia, Myeloid, Acute* / therapy
  • Mice
  • Receptors, Antigen, T-Cell, gamma-delta / metabolism

Substances

  • Receptors, Antigen, T-Cell, gamma-delta