Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges

Int J Nanomedicine. 2024 Feb 23:19:1867-1886. doi: 10.2147/IJN.S442768. eCollection 2024.

Abstract

Although the frequency of bone metastases from breast cancer has increased, effective treatment is lacking, prompting the development of nanomedicine, which involves the use of nanotechnology for disease diagnosis and treatment. Nanocarrier drug delivery systems offer several advantages over traditional drug delivery methods, such as higher reliability and biological activity, improved penetration and retention, and precise targeting and delivery. Various nanoparticles that can selectively target tumor cells without causing harm to healthy cells or organs have been synthesized. Recent advances in nanotechnology have enabled the diagnosis and prevention of metastatic diseases as well as the ability to deliver complex molecular "cargo" particles to metastatic regions. Nanoparticles can modulate systemic biodistribution and enable the targeted accumulation of therapeutic agents. Several delivery strategies are used to treat bone metastases, including untargeted delivery, bone-targeted delivery, and cancer cell-targeted delivery. Combining targeted agents with nanoparticles enhances the selective delivery of payloads to breast cancer bone metastatic lesions, providing multiple delivery advantages for treatment. In this review, we describe recent advances in nanoparticle development for treating breast cancer bone metastases.

Keywords: bone metastasis; breast cancer; drug delivery; nanoparticle.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents* / therapeutic use
  • Bone Neoplasms* / drug therapy
  • Breast Neoplasms* / drug therapy
  • Drug Delivery Systems
  • Female
  • Humans
  • Nanoparticles* / therapeutic use
  • Reproducibility of Results
  • Tissue Distribution

Substances

  • Antineoplastic Agents