Evaluation of simulation methods for tumor subclonal reconstruction

ArXiv [Preprint]. 2024 Feb 14:arXiv:2402.09599v1.

Abstract

Most neoplastic tumors originate from a single cell, and their evolution can be genetically traced through lineages characterized by common alterations such as small somatic mutations (SSMs), copy number alterations (CNAs), structural variants (SVs), and aneuploidies. Due to the complexity of these alterations in most tumors and the errors introduced by sequencing protocols and calling algorithms, tumor subclonal reconstruction algorithms are necessary to recapitulate the DNA sequence composition and tumor evolution in silico. With a growing number of these algorithms available, there is a pressing need for consistent and comprehensive benchmarking, which relies on realistic tumor sequencing generated by simulation tools. Here, we examine the current simulation methods, identifying their strengths and weaknesses, and provide recommendations for their improvement. Our review also explores potential new directions for research in this area. This work aims to serve as a resource for understanding and enhancing tumor genomic simulations, contributing to the advancement of the field.

Publication types

  • Preprint