PHDtools: A platform for pathogen detection and multi-dimensional genetic signatures decoding to realize pathogen genomics data analyses online

Gene. 2024 May 30:909:148306. doi: 10.1016/j.gene.2024.148306. Epub 2024 Feb 24.

Abstract

Objectives: Facing the emerging diseases, rapid identification of the pathogen and multi-dimensional characterization of the genomic features at both isolate-level and population-level through high-throughput sequencing data can provide invaluable information to guide the development of antiviral agents and strategies. However, a user-friendly program is in urgent need for clinical laboratories without bioinformatics background to decode the complex big genomics data.

Methods: In this study, we developed an interactive online platform named PHDtools with a total of 15 functions to analyze metagenomics data to identify the potential pathogen and decode multi-dimensional genetic signatures including intra-/inter-host variations and lineage-level variations. The platform was applied to analyze the meta-genomic data of the samples collected from the 172 imported COVID-19 cases.

Results: According to the analytical results of mNGS, 27 patients were found to have the co-infections of SARS-CoV-2 with either influenza virus (n = 9) or human picobirnavirus (n = 19). Enough coverages of all the assembled SARS-CoV-2 genomes provided the sub-lineages of Omicron variant, and the number of mutations in the non-structural genes and M gene was increased, as well as the intra-host variations occurred in E and M gene were under positive selection (Ka/Ks > 1). These findings of increased or changed mutations in the SARS-CoV-2 genome characterized the current adaptive evolution patterns of Omicron sub-lineages, and revealed the evolution speed of these sub-lineages might increase.

Conclusions: Consequently, the application of PHDtools has proved that this platform is accurate, user-friendly and convenient for clinical users who are deficient in bioinformatics, and the clinical monitor of SARS-CoV-2 genomes by PHDtools also highlighted the potential evolution features of current SARS-CoV-2 and indicated that the development of anti-SARS-CoV-2 agents and new-designed vaccines should incorporate the gene variations other than S gene.

Keywords: Genomics; Multi-dimensional; NGS; Pathogen detection; Variation identification.

MeSH terms

  • Antiviral Agents
  • Computational Biology*
  • Data Analysis
  • Genomics*
  • Humans
  • Metagenomics

Substances

  • Antiviral Agents