Motif-Based Contrastive Learning for Community Detection

IEEE Trans Neural Netw Learn Syst. 2024 Feb 26:PP. doi: 10.1109/TNNLS.2024.3367873. Online ahead of print.

Abstract

Community detection has become a prominent task in complex network analysis. However, most of the existing methods for community detection only focus on the lower order structure at the level of individual nodes and edges and ignore the higher order connectivity patterns that characterize the fundamental building blocks within the network. In recent years, researchers have shown interest in motifs and their role in network analysis. However, most of the existing higher order approaches are based on shallow methods, failing to capture the intricate nonlinear relationships between nodes. In order to better fuse higher order and lower order structural information, a novel deep learning framework called motif-based contrastive learning for community detection (MotifCC) is proposed. First, a higher order network is constructed based on motifs. Subnetworks are then obtained by removing isolated nodes, addressing the fragmentation issue in the higher order network. Next, the concept of contrastive learning is applied to effectively fuse various kinds of information from nodes, edges, and higher order and lower order structures. This aims to maximize the similarity of corresponding node information, while distinguishing different nodes and different communities. Finally, based on the community structure of subnetworks, the community labels of all nodes are obtained by using the idea of label propagation. Extensive experiments on real-world datasets validate the effectiveness of MotifCC.