Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease

Hepatol Commun. 2024 Feb 26;8(3):e0310. doi: 10.1097/HC9.0000000000000310. eCollection 2024 Mar 1.

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD), a replacement of the nomenclature employed for NAFLD, is the most prevalent chronic liver disease worldwide. Despite its high global prevalence, NAFLD is often under-recognized due to the absence of reliable noninvasive biomarkers for diagnosis and staging. Growing evidence suggests that the gut microbiome plays a significant role in the occurrence and progression of NAFLD by causing immune dysregulation and metabolic alterations due to gut dysbiosis. The rapid advancement of sequencing tools and metabolomics has enabled the identification of alterations in microbiome signatures and gut microbiota-derived metabolite profiles in numerous clinical studies related to NAFLD. Overall, these studies have shown a decrease in α-diversity and changes in gut microbiota abundance, characterized by increased levels of Escherichia and Prevotella, and decreased levels of Akkermansia muciniphila and Faecalibacterium in patients with NAFLD. Furthermore, bile acids, short-chain fatty acids, trimethylamine N-oxide, and tryptophan metabolites are believed to be closely associated with the onset and progression of NAFLD. In this review, we provide novel insights into the vital role of gut microbiome in the pathogenesis of NAFLD. Specifically, we summarize the major classes of gut microbiota and metabolic biomarkers in NAFLD, thereby highlighting the links between specific bacterial species and certain gut microbiota-derived metabolites in patients with NAFLD.

Publication types

  • Review

MeSH terms

  • Bile Acids and Salts
  • Gastrointestinal Microbiome*
  • Humans
  • Metabolomics
  • Microbiota*
  • Non-alcoholic Fatty Liver Disease* / diagnosis

Substances

  • Bile Acids and Salts