Amino acid chiral amplification using Monte Carlo dynamic

J Chem Phys. 2024 Feb 28;160(8):084502. doi: 10.1063/5.0190089.

Abstract

This study investigates the stability of chiral-molecule solution phases, with a specific focus on amino acids. The model framework is based on a two-dimensional square lattice model, where individual sites may be occupied by oriented chiral molecules or structureless solvent particles. Utilizing the Glauber dynamics and statistical mechanical formalism, as previously introduced and examined by Lombardo et al., we explore the influence of temperature, amino acid concentration, enantiomeric excess, and homochiral interaction strength on nucleation mechanisms, equilibrium phase behavior, and crystal composition. Our findings offer thermodynamic insights into the chiral amplification process of amino acids, contributing to a deeper understanding of the underlying processes.