Computer Vision-Based Biomass Estimation for Invasive Plants

J Vis Exp. 2024 Feb 9:(204). doi: 10.3791/66067.

Abstract

We report on the detailed steps of a method to estimate the biomass of invasive plants based on UAV remote sensing and computer vision. To collect samples from the study area, we prepared a sample square assembly to randomize the sampling points. An unmanned aerial camera system was constructed using a drone and camera to acquire continuous RGB images of the study area through automated navigation. After completing the shooting, the aboveground biomass in the sample frame was collected, and all correspondences were labeled and packaged. The sample data was processed, and the aerial images were segmented into small images of 280 x 280 pixels to create an image dataset. A deep convolutional neural network was used to map the distribution of Mikania micrantha in the study area, and its vegetation index was obtained. The organisms collected were dried, and the dry weight was recorded as the ground truth biomass. The invasive plant biomass regression model was constructed using the K-nearest neighbor regression (KNNR) by extracting the vegetation index from the sample images as an independent variable and integrating it with the ground truth biomass as a dependent variable. The results showed that it was possible to predict the biomass of invasive plants accurately. An accurate spatial distribution map of invasive plant biomass was generated by image traversal, allowing precise identification of high-risk areas affected by invasive plants. In summary, this study demonstrates the potential of combining unmanned aerial vehicle remote sensing with machine learning techniques to estimate invasive plant biomass. It contributes significantly to the research of new technologies and methods for real-time monitoring of invasive plants and provides technical support for intelligent monitoring and hazard assessment at the regional scale.

Publication types

  • Video-Audio Media

MeSH terms

  • Biomass
  • Cluster Analysis
  • Computers*
  • Intelligence*
  • Machine Learning