Superior Visible Photoelectric Response with Au/Cu2NiSnS4 Core-Shell Nanocrystals

ACS Appl Mater Interfaces. 2024 Mar 6;16(9):12033-12041. doi: 10.1021/acsami.3c17462. Epub 2024 Feb 26.

Abstract

The incorporation of plasmonic metal nanostructures into semiconducting chalcogenides in the form of core-shell structures provides a promising approach to enhancing the performance of photodetectors. In this study, we combined Au nanoparticles with newly developed copper-based chalcogenides Cu2NiSnS4 (Au/CNTS) to achieve an ultrahigh optoelectronic response in the visible regime. The high-quality Au/CNTS core-shell nanocrystals (NCs) were synthesized by developing a unique colloidal hot-injection method, which allowed for excellent control over sizes, shapes, and elemental compositions. The as-synthesized Au/CNTS hybrid core-shell NCs exhibited enhanced optical absorption, carrier extraction efficiency, and improved photosensing performance owing to the plasmonic-induced resonance energy transfer effect of the Au core. This effect led to a significant increase in the carrier density of the Au/CNTS NCs, resulting in a measured responsivity of 1.2 × 103 AW-1, a specific detectivity of 6.2 × 1011 Jones, and an external quantum efficiency of 3.8 × 105 % at an incident power density of 318.5 μW cm-2. These results enlighten a new era in the development of plasmonic core-shell nanostructure-based visible photodetectors.

Keywords: chalcogenides; colloidal hot-injection methods; core−shell nanocrystals; hybrid photodetectors; light-matter interactions.