Gammaherpesvirus infection alters transfer RNA splicing and triggers tRNA cleavage

bioRxiv [Preprint]. 2024 Feb 17:2024.02.16.580780. doi: 10.1101/2024.02.16.580780.

Abstract

Transfer RNAs (tRNAs) are fundamental for both cellular and viral gene expression during viral infection. Moreover, mounting evidence supports a noncanonical role for tRNA cleavage products in the control of gene expression during diverse conditions of stress and infection. We previously reported that infection with the model murine gammaherpesvirus, MHV68, leads to altered tRNA transcription, suggesting that tRNA regulation may play an important role in mediating viral replication or the host response. To better understand how viral infection alters tRNA expression, we combined Ordered Two Template Relay (OTTR) with tRNA-specific bioinformatic software called tRAX to profile full-length tRNAs and fragmented tRNA-derived RNAs (tDRs) during infection with MHV68. We find that OTTR-tRAX is a powerful sequencing strategy for combined tRNA/tDR profiling and reveals that MHV68 infection triggers pre-tRNA and mature tRNA cleavage, resulting in the accumulation of specific tDRs. Fragments of virally-encoded tRNAs (virtRNAs), as well as virtRNA base modification signatures are also detectable during infection. We present evidence that tRNA splicing factors are involved in the biogenesis of MHV68-induced cleavage products from pre-tRNAs and, in the case of CLP1 kinase, impact infectious virus production. Our data offers new insights into the importance of tRNA processing during gammaherpesvirus infection.

Publication types

  • Preprint