Radiation Therapy Physics Quality Assurance and Management Practices in Low- and Middle-Income Countries: An Initial Pilot Survey in Six Countries and Validation Through a Site Visit

Adv Radiat Oncol. 2023 Aug 7;9(2):101335. doi: 10.1016/j.adro.2023.101335. eCollection 2024 Feb.

Abstract

Purpose: Our purpose was to assess physics quality assurance (QA) practices in less resourced radiation therapy (RT) centers to improve quality of care.

Methods and materials: A preliminary study was conducted in 2020 of 13 select RT centers in 6 countries, and in 2021, our team conducted onsite visits to all the RT centers in Ghana, one of the countries from the initial survey. The RT centers included 1 private and 2 public institutions (denoted as Public-1 and Public-2). Follow-up surveys were sent to 17 medical physicists from the site visit. Questions centered on the topics of equipment, institutional practice, physics quality assurance, management, and safety practices. Qualitative and descriptive methods were used for data analysis. Questions regarding operational challenges (machine downtime, patient-related issues, power outages, and staffing) were asked on a 5-point Likert scale.

Results: The preliminary survey from 2020 had a 92% response rate. One key result showed that for RT centers in lower gross national income per capita countries there was a direct correlation between QA needs and the gross national income per capita of the country. The needs identified included film/array detectors, independent dose calculation software, calibration of ion chambers, diodes, thermoluminiscence diodes (TLDs), phantoms for verification, Treatment Planning System (TPS) test phantoms, imaging test phantoms and film dosimeters, education, and training. For the post survey after the site visit in 2021, we received a 100% response rate. The private and the Public-1 institutions each have computed tomography simulators located in their RT center. The average daily patient external beam workload for each clinic on a linear accelerator was: private = 25, Public-1 = 55, Public-2 = 40. The Co-60 workload was: Public-1 = 45, Public-2 = 25 (there was no Co-60 at the private hospital). Public-1 and -2 lacked the equipment necessary to conform to best practices in Task Group reports (TG) 142 and 198. Public-2 reported significant operational challenges. Notably, Public-1 and -2 have peer review chart rounds, which are attended by clinical oncologists, medical physicists, physicians, and physics trainees. All 17 physicists who responded to the post site visit survey indicated they had a system of documenting, tracking, and trending patient-related safety incidents, but only 1 physicist reported using International Atomic Energy Agency Safety in Radiation Oncology.

Conclusions: The preliminary study showed a direct correlation between QA needs and the development index of a country, and the follow-up survey examines operational and physics QA practices in the RT clinics in Ghana, one of the initial countries surveyed. This will form the basis of a planned continent-wide survey in Africa intended to spotlight QA practices in low- and middle-income countries, the challenges faced, and lessons learned to help understand the gaps and needs to support local physics QA and management programs. Audits during the site visit show education and training remain the most important needs in operating successful QA programs.