An integrative pan-cancer bioinformatics analysis of MSRB1 and its association with tumor immune microenvironment, prognosis, and immunotherapy

Heliyon. 2024 Feb 15;10(4):e26090. doi: 10.1016/j.heliyon.2024.e26090. eCollection 2024 Feb 29.

Abstract

Methionine sulfoxide reductase B1 (MSRB1) is involved in the development and immune regulation of multiple tumors. However, the role of MSRB1 in the tumor microenvironment and its potential as a therapeutic target remain largely unknown. In this study, MSRB1 expression patterns were evaluated using pan-cancer RNA sequencing data from multiple cell lines, tissues, and single cells. The pan-cancer prognostic role of MSRB1 was assessed and the association between MSRB1 expression and certain cancer characteristics was analyzed. We showed that MSRB1 expression levels were increased in several types of cancer (P < 0.05) and in certain cell types (macrophages, dendritic cells, and malignant tumor cells). The upregulation of MSRB1 expression was due to DNA copy number amplification. Furthermore, MSRB1 was significantly associated with the activation of immune pathways (P < 0.05, NES > 0), immune cell infiltration, and expression of immune checkpoint molecules. In addition, high expression of MSRB1 was found in a series of in vivo and in vitro immunotherapy response models (P < 0.05), and showed resistance to most targeted drugs. Our results indicated that MSRB1 may regulate the tumor immune microenvironment through an immunoresponse and potentially influence cancer development. This could make it a promising predictive biomarker and therapeutic target for precise tumor immunotherapy.

Keywords: Biomarker; Immunotherapy response; MSRB1; Pan-cancer; Tumor microenvironment.