The effect of Tween 80 on monochlorobenzene migration in bentonite

J Hazard Mater. 2024 Apr 15:468:133781. doi: 10.1016/j.jhazmat.2024.133781. Epub 2024 Feb 13.

Abstract

Several studies conducted at industrial sites have documented the infiltration of dense non-aqueous phase liquids (DNAPLs) into clay layers, a phenomenon potentially influenced by the coexistence of chemicals like surfactants in some common pollutants. Bentonite (Ben), monochlorobenzene (MCB), and Tween 80 (T80) were selected as reference components to investigate the influences of nonionic surfactants on DNAPLs migration in clays. Results showed that T80 promotes MCB dissolution and encourages MCB adsorption on Ben. This process reduces the hydrophilicity of Ben, resulting in water loss and shrinkage, which creates cracks and facilitates the migration of MCB within the clay. Tw80 notably enhances MCB solubility, as indicated by a molar solubilization ratio of 7.80. The MCB adsorption on Ben (QMCB) displays a linear increase with raising the T80 adsorption on Ben (QT80), especially when QT80 are below the thresholds, e.g., 408.4 mg/g at pH 3 and 339.3 mg/g at pH 7; however, QMCB is decreased with increasing adsorbed T80 further. The average fracture ratio, crack length, and crack width of cracked samples in the cracking experiments were 0.794%, 11.29 mm, and 0.209 mm, respectively. The findings here contribute to understanding the role of surfactants in VOC transport in contaminated sites.

Keywords: Clay; Crack; DNAPLs; Surfactant; Wettability.