Differentiation of Myocardial Properties in Physiological Athletic Cardiac Remodeling and Mild Hypertrophic Cardiomyopathy

Biomedicines. 2024 Feb 12;12(2):420. doi: 10.3390/biomedicines12020420.

Abstract

Clinical differentiation between athletes' hearts and those with hypertrophic cardiomyopathy (HCM) can be challenging. We aimed to explore the role of speckle tracking echocardiography (STE) and cardiac magnetic resonance imaging (CMR) in the differentiation between athletes' hearts and those with mild HCM. We compared 30 competitive endurance elite athletes (7% female, age 41 ± 9 years) and 20 mild phenotypic mutation-positive HCM carriers (15% female, age 51 ± 12 years) with left ventricular wall thickness 13 ± 1 mm. Mechanical dispersion (MD) was assessed by means of STE. Native T1-time and extracellular volume (ECV) were assessed by means of CMR. MD was higher in HCM mutation carriers than in athletes (54 ± 16 ms vs. 40 ± 11 ms, p = 0.001). Athletes had a lower native T1-time (1204 (IQR 1191, 1234) ms vs. 1265 (IQR 1255, 1312) ms, p < 0.001) and lower ECV (22.7 ± 3.2% vs. 25.6 ± 4.1%, p = 0.01). MD > 44 ms optimally discriminated between athletes and HCM mutation carriers (AUC 0.78, 95% CI 0.65-0.91). Among the CMR parameters, the native T1-time had the best discriminatory ability, identifying all HCM mutation carriers (100% sensitivity) with a specificity of 75% (AUC 0.83, 95% CI 0.71-0.96) using a native T1-time > 1230 ms as the cutoff. STE and CMR tissue characterization may be tools that can differentiate athletes' hearts from those with mild HCM.

Keywords: athletes’ hearts; cardiac magnetic resonance imaging; hypertrophic cardiomyopathy; strain imaging.