Pleiotropic Effects of PhaR Regulator in Bradyrhizobium diazoefficiens Microaerobic Metabolism

Int J Mol Sci. 2024 Feb 10;25(4):2157. doi: 10.3390/ijms25042157.

Abstract

Bradyrhizobium diazoefficiens can live inside soybean root nodules and in free-living conditions. In both states, when oxygen levels decrease, cells adjust their protein pools by gene transcription modulation. PhaR is a transcription factor involved in polyhydroxyalkanoate (PHA) metabolism but also plays a role in the microaerobic network of this bacterium. To deeply uncover the function of PhaR, we applied a multipronged approach, including the expression profile of a phaR mutant at the transcriptional and protein levels under microaerobic conditions, and the identification of direct targets and of proteins associated with PHA granules. Our results confirmed a pleiotropic function of PhaR, affecting several phenotypes, in addition to PHA cycle control. These include growth deficiency, regulation of carbon and nitrogen allocation, and bacterial motility. Interestingly, PhaR may also modulate the microoxic-responsive regulatory network by activating the expression of fixK2 and repressing nifA, both encoding two transcription factors relevant for microaerobic regulation. At the molecular level, two PhaR-binding motifs were predicted and direct control mediated by PhaR determined by protein-interaction assays revealed seven new direct targets for PhaR. Finally, among the proteins associated with PHA granules, we found PhaR, phasins, and other proteins, confirming a dual function of PhaR in microoxia.

Keywords: microoxia; polyhydroxyalkanoate; protein–DNA interaction; proteomics; rhizobia; transcriptomics.

MeSH terms

  • Bacterial Proteins / metabolism
  • Bradyrhizobium* / genetics
  • Bradyrhizobium* / metabolism
  • Gene Expression Regulation, Bacterial
  • Polyhydroxyalkanoates* / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Bacterial Proteins
  • Transcription Factors
  • Polyhydroxyalkanoates

Supplementary concepts

  • Bradyrhizobium diazoefficiens