Ion Conductivity in Salt-Doped Polymers: Combined Effects of Temperature and Salt Concentration

ACS Macro Lett. 2024 Mar 19;13(3):322-327. doi: 10.1021/acsmacrolett.3c00757. Epub 2024 Feb 23.

Abstract

We construct a coarse-grained molecular dynamics model based on poly(ethylene oxide) and lithium bis(trifluoromethane)sulfonimide salt to examine the combined effects of temperature and salt concentration on the transport properties. Salt doping notably slows the dynamics of polymer chains and reduces ion diffusivity, resulting in a glass transition temperature increase proportional to the salt concentration. The polymer diffusion is shown to be well represented by a modified Vogel-Fulcher-Tamman (M-VFT) equation that accounts for both the temperature and salt concentration dependence. Furthermore, we find that, at any temperature, the concentration dependence of the conductivity is well described by the product of its infinite dilution value and a correction factor accounting for the reduced segmental mobility with increasing salt concentration. These results highlight the important role of polymer segmental mobility in the salt concentration dependence of ion conductivity for temperatures near and above the glass transition.