Fabrication of Eu-MOFs rod-shaped nanospheres with dual emissions for ratiometric fluorescence detecting Hg2+ in water

Spectrochim Acta A Mol Biomol Spectrosc. 2024 May 5:312:124013. doi: 10.1016/j.saa.2024.124013. Epub 2024 Feb 10.

Abstract

The incorporation of novel nanostructure has been proven to significantly improve the performance of fluorescence-based sensors in terms of sensitivity, selectivity, and detection capability. Herein, a lanthanide metal-organic framework (BTC-Eu-BDC-NH2) with dual ligands of 2-aminobenzoic acid (BDC-NH2) and 1,3,5-benzene tricarboxylic acid (BTC) has been prepared for ratiometric fluorescent detection of Hg2+ through the rational one-step synthetic approach. Through adjusting the ratio of two ligands, this dual-ligands strategy not only provided two independent emissions at peaks of 435 nm and 615 nm to resist the influence of external conditions, but also introduced the visual detection with an obvious color change. Moreover, the specific rod-shaped nanospheres morphology substantially enlarged the surface area of BTC-Eu-BDC-NH2 to ensure good dispersion and rapid response during sensing. Upon the addition of Hg2+, the fluorescence at 435 nm of BTC-Eu-BDC-NH2 was obviously quenched because of the interaction between Hg2+ and -NH2 from the ligand, while the red fluorescence at 615 nm remains almost unchanged. As a result, the synthesized BTC-Eu-BDC-NH2 showed excellent performances for visual sensing detection of Hg2+ with a clear luminescent color conversion from blue to red, and the detecting range was 0-40 μM with a low detection limit of 67 nM. Finally, the developed sensor was applied to actual tap water, and a handy sensing kit was constructed by hydrogel with BTC-Eu-BDC-NH2, demonstrating its potential practical applications.

Keywords: Fluorescent quenching; Mercury; Metal-organic frameworks; Nanostructure; Ratiometric detection.