Full Spatial Characterization of Entangled Structured Photons

Phys Rev Lett. 2024 Feb 9;132(6):063802. doi: 10.1103/PhysRevLett.132.063802.

Abstract

Vector modes are fully polarized modes of light with spatially varying polarization distributions, and they have found widespread use in numerous applications such as microscopy, metrology, optical trapping, nanophotonics, and communications. The entanglement of such modes has attracted significant interest, and it has been shown to have tremendous potential in expanding existing applications and enabling new ones. However, due to the complex spatially varying polarization structure of entangled vector modes (EVMs), a complete entanglement characterization of these modes remains challenging and time consuming. Here, we have used a time-tagging event camera to demonstrate the ability to completely characterize the entanglement of EVMs. Leveraging the camera's capacity to provide independent measurements for each pixel, we simultaneously characterize the entanglement of approximately 2.6×10^{6} modes between a bipartite EVM through measuring only 16 observables in polarization. We reveal that EVMs can naturally generate various polarization-entangled Bell states. This achievement is an important milestone in high-dimensional entanglement characterization of structured light, and it could significantly impact the implementation of related quantum technologies. The potential applications of this technique are extensive, and it could pave the way for advancements in quantum communication, quantum imaging, and other areas where structured entangled photons play a crucial role.