Potential Global Distribution of Paracoccus marginatus, under Climate Change Conditions, Using MaxEnt

Insects. 2024 Feb 1;15(2):98. doi: 10.3390/insects15020098.

Abstract

The papaya mealybug, Paracoccus marginatus, is an invasive pest species found all over the world. It is native to Mexico and Central America, but is now present in more than 50 countries and regions, seriously threatening the economic viability of the agricultural and forestry industry. In the current study, the global potential distribution of P. marginatus was predicted under current and future climatic conditions using MaxEnt. The results of the model assessment indicated that the area under the curve of the receiver operating characteristic ( ROC-AUC) was 0.949, while the TSS value was 0.820. The results also showed that the three variables with the greatest impact on the model were min temperature of coldest month (bio6), precipitation of wettest month (bio13), and precipitation of coldest quarter (bio19), with corresponding contributions of 46.8%, 31.1%, and 13.1%, respectively. The results indicated that the highly suitable areas were mainly located in tropical and subtropical regions, including South America, southern North America, Central America, Central Africa, Australia, the Indian subcontinent, and Southeast Asia. Under four climate scenarios in the 2050s and 2070s, the area of suitability will change very little. Moreover, the results showed that the area of suitable areas in 2070s increased under all four climate scenarios compared to the current climate. In contrast, the area of suitable habitat increases from the current to the 2050s under the SSP370 and SSP585 climate scenarios. The current study could provide a reference framework for the future control and management of papaya mealybug and other invasive species.

Keywords: climate change; climate scenarios; invasive pest; papaya mealybug.