Virtual and Augmented Reality Simulators Show Intraoperative, Surgical Training, and Athletic Training Applications: A Scoping Review

Arthroscopy. 2024 Feb 21:S0749-8063(24)00146-4. doi: 10.1016/j.arthro.2024.02.011. Online ahead of print.

Abstract

Purpose: To review published literature to identify and evaluate the effect of virtual reality (complete immersion) and augmented reality (overlay of digital information onto the physical world) simulators on intraoperative use for orthopaedic surgeons, orthopaedic surgical education, and athletic training.

Methods: A systematic review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify studies, published since 2014, that evaluated the role of augmented/virtual reality on intraoperative use for orthopaedic surgeons, orthopaedic surgical education, and athletic training.

Results: Virtual reality (VR) simulators provide 3-dimensional graphical simulation of the physical world, and augmented reality (AR) simulators overlay digital information onto the physical world. Simulators can include interactive features (i.e., replication of intraoperative bleeding), haptic feedback, and unrestricted task repetition, and they can record, compare, and analyze performance while being easily accessible and eliminating the need for the presence of a mentor or coach. Four studies reported on VR for intraoperative use, 47 studies on surgical education, and 10 studies on athletic training. Two studies revealed the advantages of using VR simulation during intraoperative procedures, specifically showcasing its benefits for elbow arthroscopy, while 2 studies demonstrated similar positive outcomes for hip arthroscopy. Seventeen studies demonstrated that a VR simulator could be a beneficial tool to assist in surgical education for the knee, while 12 studies found that VR simulation is a valuable tool for aiding in surgical education of shoulder arthroscopy. Ten studies demonstrated that VR simulation improves skills in the operating room. Three studies revealed that individuals with more experience exhibit superior performance on these simulators compared to those with less experience. In the realm of athletic training, 10 studies showcased the potential of VR simulation to play a significant role in athletic performance and injury rehabilitation.

Conclusions: VR simulation shows benefits in the operating room, is a valuable tool for surgical education resulting in improved skills, and can be used to enhance athletic performance and injury rehabilitation.

Clinical relevance: Understanding that VR simulators can improve surgical outcomes, surgical skill training, and athletic training and rehabilitation could facilitate development and adoption of this advanced technology.

Publication types

  • Review