A green method to clean copper slag and rapidly recover copper resources via reduction-sulfurizing smelting and super-gravity separation at low temperature

J Hazard Mater. 2024 Apr 15:468:133834. doi: 10.1016/j.jhazmat.2024.133834. Epub 2024 Feb 19.

Abstract

Massive copper slag containing heavy metals is produced in copper making and 0.5 - 8.0 wt% Cu is lost into it, deserving to be recovered. In this study, the waste coke and gypsum were employed to clean the copper slag, the lost copper was reduction-sulfurized and enriched to the matte droplets. However, the free-settling of matte droplets under normal gravity needed a higher temperature of 1350 ℃. On this basis, the matte droplets were efficiently separated from the cleaned slag via super-gravity at a low temperature of 1200 ℃ within 3 min, the recovery ratio of Cu was up to 99.56%, and the grade of Cu in the matte phase and cleaned slag was 85.84 wt% and 0.08 wt%, respectively. Moreover, the migration, distribution and leaching behavior of heavy metal elements (Pb, Zn, Ni, etc.,) were performed and analyzed, and the treatment and utilization of volatilized vapors and tailings were also discussed. This study proposed a green method to clean the copper slag and simultaneously recover copper resources via reduction-sulfurizing smelting and super-gravity separation at a low temperature, providing scientific guidance and application prospects for the synergistic treatment of hot copper slag with waste coke and gypsum.

Keywords: Green recovery; Matte droplets; Reduction-sulfurizing; Slag cleaning; Super-gravity separation.