UPP1 enhances bladder cancer progression and gemcitabine resistance through AKT

Int J Biol Sci. 2024 Jan 27;20(4):1389-1409. doi: 10.7150/ijbs.83774. eCollection 2024.

Abstract

UPP1, a crucial pyrimidine metabolism-related enzyme, catalyzes the reversible phosphorylation of uridine to uracil and ribose-1-phosphate. However, the effects of UPP1 in bladder cancer (BLCA) have not been elucidated. AKT, which is activated mainly through dual phosphorylation (Thr308 and Ser473), promotes tumorigenesis by phosphorylating downstream substrates. This study demonstrated that UPP1 promotes BLCA cell proliferation, migration, invasion, and gemcitabine resistance by activating the AKT signaling pathway in vitro and in vivo. Additionally, UPP1 promoted AKT activation by facilitating the binding of AKT to PDK1 and PDK2 and the recruitment of phosphatidylinositol 3,4,5-triphosphate to AKT. Moreover, the beneficial effects of UPP1 on BLCA tumorigenesis were mitigated upon UPP1 mutation with Arg94 or MK2206 treatment (AKT-specific inhibitor). AKT overexpression or SC79 (AKT-specific activator) treatment restored tumor malignancy and drug resistance. Thus, this study revealed that UPP1 is a crucial oncogene and a potential therapeutic target for BLCA and that UPP1 activates the AKT signaling pathway and enhances tumorigenesis and drug resistance to gemcitabine.

Keywords: AKT; UPP1; bladder cancer.; gemcitabine; metastasis.

MeSH terms

  • Carcinogenesis
  • Cell Line, Tumor
  • Cell Proliferation
  • Gemcitabine*
  • Humans
  • Proto-Oncogene Proteins c-akt / metabolism
  • Urinary Bladder Neoplasms* / drug therapy
  • Urinary Bladder Neoplasms* / genetics
  • Urinary Bladder Neoplasms* / pathology

Substances

  • Gemcitabine
  • Proto-Oncogene Proteins c-akt