Numerical evaluation of sweeping gas membrane distillation for desalination of water towards water sustainability and environmental protection

Sci Rep. 2024 Feb 22;14(1):4340. doi: 10.1038/s41598-024-54061-5.

Abstract

Sweeping gas membrane distillation (SGMD) is considered a membrane distillation configuration. It uses an air stream to collect the water vapour. A 2D mathematical model is prepared in the current study to predict the effect of various operating parameters on the SGMD performance. Also, the temperature distribution in the SGMD was obtained. The effect of air inlet temperature, salt concentration, feed and air flowrate on air and salted solution outlet temperature and vapour flux through the membrane is investigated. There was good agreement between experimental data and modelling outputs. It was found that increase in air inlet temperature from 40 to 72 °C was increased the outlet temperature of air stream and cold solution from 37 to 63 °C and 38 to 65 °C respectively. Furthermore, increase in air inlet temperature led to the enhancement of vapour flux in the membrane distillation. Also, the salt concentration and feed flow rate did not have meaningful influence on the outlet temperatures, however, the flux was increased by increasing feed flowrate.

Keywords: Heat transfer; Mass transfer; Mathematical modelling; Membrane distillation; Temperature.