Measurement constrained emission estimates of alkylated polycyclic aromatic hydrocarbons in the Canadian Athabasca oil sands region

Environ Pollut. 2024 Apr 1:346:123602. doi: 10.1016/j.envpol.2024.123602. Epub 2024 Feb 19.

Abstract

Alkylated polycyclic aromatic hydrocarbons (APAH) are important contaminants of crude oil production and exhibit similar toxicity to their parent compounds. This study developed an emission inventory of APAH in a major oil sands development region of Alberta, Canada, and validated the inventory with ambient concentration measurements through dispersion modeling. The initial estimate of regional total annual emissions of 21 APAH species was 362 tonnes/year in the last decade, of which 309 and 53 tonnes/year were in particle-bound and gas-phase APAH, respectively. Fugitive dust from oil sands mining activities is the primary source of particle-bound APAH, emitting 274 tonnes/year. Other major sources of APAH include point sources (31), tailings ponds (21), anthropogenic fuel consumption from mine fleet (17), and local transportation (13). The group of species with highest emissions was C1-C4 alkylnaphthalenes (53%), followed by C1-C4 alkylphenanthrenes/anthracenes (19%), C1-C4 fluorenes (13%), and C1-C4 fluoranthenes/pyrenes and C1-C4 benz[a]anthracenes/chrysene/triphenylenes (7% each). CALPUFF dispersion modeling was performed using the APAH emissions as model input. The model-predicted annual average ambient APAH concentrations at 17 monitoring sites were 1%-52% (19% on average) lower than the measurements. Inverse dispersion modeling was then applied to adjust APAH emissions higher by 19% for each of the 21 APAH species, which resulted in a revised estimate of APAH emissions to 431 tonnes/year. With the revised emissions as model input, model bias in the predicted ambient concentration was reduced from -19% to -8%. The model results showed the highest concentrations of APAH were near tailings ponds and open mining faces and downwind areas, with total APAH concentrations being higher than 50 ng/m3.

MeSH terms

  • Alberta
  • Anthracenes
  • Diamines*
  • Environmental Monitoring / methods
  • Oil and Gas Fields
  • Polycyclic Aromatic Hydrocarbons* / analysis

Substances

  • Polycyclic Aromatic Hydrocarbons
  • 7-(N-(3-aminopropyl)amino)heptan-2-one
  • Anthracenes
  • Diamines