Near-Infrared Light Emitting Metal Halides: Materials, Mechanisms, and Applications

Adv Mater. 2024 Feb 21:e2312482. doi: 10.1002/adma.202312482. Online ahead of print.

Abstract

Near-Infrared (NIR) light emitting metal halides are emerging as a new generation of optical materials owing to their appealing features, which include low-cost synthesis, solution processability, and adjustable optical properties. NIR-emitting perovskite-based light-emitting diodes (LEDs) have reached an external quantum efficiency (EQE) of over 20% and a device stability of over 10,000 h. Such results have sparked an interest in exploring new NIR metal halide emitters. In this review, several different types of NIR-emitting metal halides, including lead/tin bromide/iodide perovskites, lanthanide ions doped/based metal halides, double perovskites, low dimensional hybrid and Bi3+ /Sb3+ /Cr3+ doped metal halides, are summarized, and their recent advancement is assessed. The characteristics and mechanisms of narrow-band or broadband NIR luminescence in all these materials are discussed in detail. Also, the various applications of NIR-emitting metal halides are highlighted and an outlook for the field is provided.

Keywords: NIR luminescence mechanism; NIR-emitting materials; applications; metal halides.

Publication types

  • Review