Computational assessment of marine natural products as LasR inhibitors for attenuating quorum sensing in Pseudomonas aeruginosa

J Biomol Struct Dyn. 2024 Feb 20:1-15. doi: 10.1080/07391102.2024.2319110. Online ahead of print.

Abstract

The Quorum Sensing (QS) system in bacteria has become a focal point for researchers aiming to develop novel antimicrobials to combat multidrug-resistant bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterium, has developed resistance against a variety of antimicrobial agents, making it a formidable pathogen responsible for nosocomial infections. QS system mainly controls the expression of genes responsible for biofilm formation and virulence of bacteria. Within the QS system of P. aeruginosa, the transcription activator LasR plays a pivotal role and is an appealing target for the development of antimicrobial agents. In this study, we employed molecular docking and molecular dynamics simulations to identify potential inhibitors of LasR by screening marine natural products (MNPs) from the CMNPD database. We identified ten MNPs with excellent docking scores (less than -11.7 kcal/mol) against LasR, surpassing the binding energy of the co-crystal 3-oxo-C12-HSL (-8.594 kcal/mol) and the reference compound cladodionen (-6.71 kcal/mol). Furthermore, we selected five of these MNPs with the highest MM/GBSA binding energies for extensive 100 ns molecular simulations to assess their stability. The molecular dynamics simulations indicated three MNPs, namely CMNPD10886, CMNPD20987, and CMNPD20960, maintained high stability throughout the 100 ns simulation period, as evidenced by their root mean square deviation, root mean square fluctuation, radius of gyration, and hydrogen bond interactions within the ligand-protein complex analysis. Furthermore, essential dynamics (PCA and DCCM) were performed to analyse the correlated motion of amino acids. These findings suggest that these compounds hold potential as inhibitors of LasR, offering promising prospects for the development of treatments against infections.Communicated by Ramaswamy H. Sarma.

Keywords: Pseudomonas aeruginosa; antimicrobials; drug discovery; marine natural products; structure-based drug designing; therapeutics.