Amorphous RuPd bimetallene for hydrogen evolution reaction in acidic and alkaline conditions: a first-principles study

Phys Chem Chem Phys. 2024 Feb 28;26(9):7896-7906. doi: 10.1039/d3cp05512d.

Abstract

Metallene materials can provide a large number of active catalytic sites for the efficient use of noble metals as catalysts for hydrogen evolution reaction (HER), whereas the intrinsic activity on the surface is insufficient in crystal phase. The amorphous phase with an inherent long-range disorder can offer a rich coordinate environment and charge polarization on the surface is proposed for promoting the intrinsic catalytic activity on the surface of noble metals. Herein, we designed an amorphous RuPd (am-RuPd) structure by the first principles molecular dynamics method. The performance of the acidic HER on am-RuPd can have a huge enhancement due to the free energy change of hydrogen adsorption close to zero. In alkaline conditions, the H2O dissociation energy barrier on am-RuPd is just 0.49 eV, and it is predicted that the alkaline HER performance of am-RuPd will largely exceed that of Pt nanocrystalline sheets. This work provides a strategy for enhancing the intrinsic catalytic activity on the surface and a way to design an efficient HER catalyst based on metallene materials used in both acidic and alkaline conditions.