Antiphotoaging effects of solvent fractions isolated from Allomyrina dichotoma larvae extract

Biochem Biophys Rep. 2024 Feb 13:38:101660. doi: 10.1016/j.bbrep.2024.101660. eCollection 2024 Jul.

Abstract

Skin aging is affected by a variety of factors, including ultraviolet rays, oxidative stress, medications, smoking, and genetics. Among them, photo-aging accounts for about 80% of skin aging. The present study was evaluated to verify the potential of Allomyrina dichotoma larvae, which has recently been attracting attention as an edible insect, as an anti-aging substance. UVB irradiation at 100 mJ/cm2 was sufficient to induce photo-aging of fibroblasts within 24 h, which was alleviated after treatment with 70% ethanol extract of Allomyrina dichotoma larvae extract (ADLE). To obtain an extract from ADLE, which has a relatively high content of polyphenol compounds containing physiological activity, fractional solvent extraction was carried out using organic solvents such as hexane, chloroform, ethyl acetate, and butanol. Additionally, ethyl acetate and butanol fractions contributed to the inhibition of UVB-induced ROS production, cell damage, and senescence of fibroblasts. It was also confirmed that the two fractions can regulate the expression of MMP-1 and AP-1. In particular, the ethyl acetate fraction showed an excellent effect in recovering collagen decomposed by UVB. Therefore, these results suggest that ADLE has potential as a natural insect-derived biomaterial to inhibit UVB-induced photo-aging.

Keywords: Allomyrina dichotoma larvae; Collagen; Human dermal fibroblast; Photo-aging; Ultraviolet B.