Development of halochromic electrospun labels for non-invasive shelf life assessment of rainbow trout (Oncorhynchus mykiss): Incorporation of barberry anthocyanin extract in protein-based smart packaging

Food Sci Technol Int. 2024 Feb 19:10820132231219779. doi: 10.1177/10820132231219779. Online ahead of print.

Abstract

Using barberry (Berberis vulgaris L.) as a natural dye in combination with electrospinning technology represents a promising approach for the development of intelligent packaging systems. In this study, the influence of different concentrations of zein (16, 18, and 20%) and barberry anthocyanin-rich powder (BARP) (16, 18, and 20%) on the surface tension and rheological properties of the solution were evaluated. The most favorable nanofibers (NFs) were obtained from a solution containing 18% (w/w) zein under constant voltage. The surface morphology, size, and color-changing properties of electrospun NFs derived from zein polymers containing different concentrations of BARP (16, 18, and 20%) under various electrical fields (20, 22, and 24 kV) were evaluated. The Fourier-transform infrared spectroscopy analysis confirmed the interaction of BARP within the zein-based NFs. The results indicated that the concentration of BARP had a noticeable impact on the physicochemical properties of the NFs. Furthermore, efficacy of the appropriately fabricated halochromic label was evaluated for monitoring the packed rainbow trout fillet during refrigerated storage. On the 10th day, a noticeable visual color turned from pink to pale yellow was observed in response to pH variations. Additionally, the TVN value confirmed the effectiveness of halochromic electrospun labels for non-invasive assessment of fish fillet quality.

Keywords: Barberry anthocyanin; electrospinning technology; halochromic nanofibers; smart packaging.