Pan-cancer Genomic Analysis of AXL Mutations Reveals a Novel, Recurrent, Functionally Activating AXL W451C Alteration Specific to Myxofibrosarcoma

Am J Surg Pathol. 2024 Feb 19. doi: 10.1097/PAS.0000000000002191. Online ahead of print.

Abstract

Myxofibrosarcoma (MFS) is a common soft tissue sarcoma of the elderly that typically shows low tumor mutational burden, with mutations in TP53 and in genes associated with cell cycle checkpoints (RB1, CDKN2A). Unfortunately, no alterations or markers specific to MFS have been identified and, as a consequence, there are no effective targeted therapies. The receptor tyrosine kinase AXL, which drives cellular proliferation, is targetable by new antibody-based therapeutics. Expression of AXL messenger RNA is elevated in a variety of sarcoma types, with the highest levels reported in MFS, but the pathogenic significance of this finding remains unknown. To assess a role for AXL abnormalities in MFS, we undertook a search for AXL genomic alterations in a comprehensive genomic profiling database of 463,546 unique tumors (including 19,879 sarcomas, of which 315 were MFS) interrogated by targeted next-generation DNA and/or RNA sequencing. Notably, the only genomic alterations recurrent in a specific sarcoma subtype were AXL W451C (n = 8) and AXL W450C (n = 2) mutations. The tumors involved predominantly older adults (age: 44 to 81 [median: 72] y) and histologically showed epithelioid and spindle-shaped cells in a variably myxoid stroma, with 6 cases diagnosed as MFS, 3 as undifferentiated pleomorphic sarcoma (UPS), and 1 as low-grade sarcoma. The AXL W451C mutation was not identified in any non-sarcoma malignancy. A review of publicly available data sets revealed a single AXL W451C-mutant case of UPS that clustered with MFS/UPS by methylation profiling. Functional studies revealed a novel activation mechanism: the W451C mutation causes abnormal unregulated dimerization of the AXL receptor tyrosine kinase through disulfide bond formation between pairs of mutant proteins expressing ectopic cysteine residues. This dimerization triggers AXL autophosphorylation and activation of downstream ERK signaling. We further report sarcomas of diverse histologic subtypes with AXL gene amplifications, with the highest frequency of amplification identified in MFS cases without the W451C mutation. In summary, the activating AXL W451C mutation appears highly specific to MFS, with a novel mechanism to drive unregulated signaling. Moreover, AXL gene amplifications and messenger RNA overexpression are far more frequent in MFS than in other sarcoma subtypes. We conclude that these aberrations in AXL are distinct features of MFS and may aid diagnosis, as well as the selection of available targeted therapies.