Super-Resolution Diamond Magnetic Microscopy of Superparamagnetic Nanoparticles

ACS Nano. 2024 Feb 27;18(8):6523-6532. doi: 10.1021/acsnano.3c12283. Epub 2024 Feb 18.

Abstract

Scanning-probe and wide-field magnetic microscopes based on nitrogen-vacancy (NV) centers in diamond have enabled advances in the study of biology and materials, but each method has drawbacks. Here, we implement an alternative method for nanoscale magnetic microscopy based on optical control of the charge state of NV centers in a dense layer near the diamond surface. By combining a donut-beam super-resolution technique with optically detected magnetic resonance spectroscopy, we imaged the magnetic fields produced by single 30 nm iron-oxide nanoparticles. The magnetic microscope has a lateral spatial resolution of ∼100 nm, and it resolves the individual magnetic dipole features from clusters of nanoparticles with interparticle spacings down to ∼190 nm. The magnetic feature amplitudes are more than an order of magnitude larger than those obtained by confocal magnetic microscopy due to the narrower optical point-spread function and the shallow depth of NV centers. We analyze the magnetic nanoparticle images and sensitivity as a function of the microscope's spatial resolution and show that the signal-to-noise ratio for nanoparticle detection does not degrade as the spatial resolution improves. We identify sources of background fluorescence that limit the present performance, including diamond second-order Raman emission and imperfect NV charge state control. Our method, which uses <10 mW laser power and can be parallelized by patterned illumination, introduces a promising format for nanoscale magnetic imaging.

Keywords: nanoscale magnetic imaging; nitrogen vacancy centers; quantum sensing; super-resolution microscopy; superparamagnetic iron-oxide nanoparticles.