Enhancing predictions of remedial reagent transport via a vertical groundwater circulation well with high-resolution aquifer characterization

Sci Total Environ. 2024 Apr 15:921:171041. doi: 10.1016/j.scitotenv.2024.171041. Epub 2024 Feb 16.

Abstract

The vertical groundwater circulation well (GCW) is a commonly used technique in contaminated sites to remove secondary contaminants from low permeable zones. Early GCW studies often used simple subsurface hydraulic properties, such as anisotropic homogeneous aquifers or low conductivity lens/blocks, to mimic the complex subsurface heterogeneity. Although studies based on simplified representations of aquifer heterogeneity provide straightforward flow and transport information for engineering design of a GCW, they may over- or under-estimate contaminant fate and transport in the field. The objective of this study is to identify key heterogeneity factors that control the capture zone extension and to examine the extent to which the accuracy of estimated heterogeneity spatial distributions influences the prediction of remedial reagent transport. To achieve these objectives, we utilized Monte Carlo simulation to investigate the extension of the circulation zone in heterogeneous aquifers and to identify the key factors that contribute most to the variability of the circulation zone. Three commonly used geostatistical approaches (equivalent homogeneous, kriging, and highly parameterized methods) were employed to estimate the spatial distributions of key factors. The reliabilities of these estimated fields were evaluated through their remedial reagent transport predictability. The key factor analysis revealed that the mean porosity value, the variance of lnK, and the correlation length of lnK profoundly influence the lateral expansion of the capture zone. Neglecting the aquifer hydraulic conductivity heterogeneity underestimates the extension of the circulation zone and the spread of remedial reagent. Additionally, utilizing a highly parameterized approach to estimate the high-resolution K field can accurately reproduce the key remedial reagent distributions. The concentration arrival time and peak concentration are significantly improved compared to those predictions based on the equivalent homogeneous and kriged K fields.

Keywords: Aquifer heterogeneity; Groundwater circulation well; Groundwater remediation; Highly parameterized.