Multiple organs injury and myocardial energy metabolism disorders induced by isoproterenol

Toxicology. 2024 Mar:503:153752. doi: 10.1016/j.tox.2024.153752. Epub 2024 Feb 16.

Abstract

The study sought to assess the detrimental effects of isoproterenol (ISO) on major organs and investigate the potential reversibility of these adverse reactions in mice. Male mice were divided into normal control, 0.2 mg/kg.d and 3.0 mg/kg.d ISO groups, and were subcutaneously administered of the respective doses for 14 consecutive days. Subsequently, a recovery period experiment was conducted, replicating the aforementioned procedure, followed by an additional 2-week recovery period for the mice. Following 14 consecutive days of administration, mice treated with ISO exhibited notable cardiac damage manifested by abnormal ECG patterns, dysregulated energy metabolism, elevated cardiac hypertrophy, and increased heart pathological score. Additionally, the administration of ISO resulted in liver and kidney damage, as evidenced by increased pathological score, serum albumin level, and urea level. Lung damage was also observed, indicated by an increase in lung pathological score. Furthermore, the administration of ISO at a dosage of 3.0 mg/kg.d resulted in a decrease in liver mass index, serum iron content, and an increase in lung mass index. After a 2-week recovery period, mice treated with ISO showed abnormalities in ECG patterns and dysregulated myocardial energy metabolism, accompanied by a decrease in serum iron content. Histopathological examinations revealed continued pathological changes in the heart and lung, as well as significant hemosiderin deposition in the spleen. Furthermore, the group treated with ISO at a dosage of 3.0 mg/kg.d showed an increase in serum AST and TP levels. In summary, the study demonstrates that both 0.2 mg/kg.d and 3.0 mg/kg.d doses of ISO can induce damage to the heart, liver, lung, kidney, and spleen, with the higher dose causing more severe injuries. After a 2-week withdrawal period, the liver, kidney, and thymus injuries caused by 0.2 mg/kg ISO shows signs of recovery, while damage to the heart, lung, and spleen persists. The thymus injury mostly recovers, with minimal kidney pathology, but significant damage to the heart, liver, and lung remains even after the withdrawal period for the 3.0 mg/kg ISO dose.

Keywords: Dysregulated energy metabolism; Iron circulation; Isoproterenol; Multiple-organ injury; Recovery period.

MeSH terms

  • Animals
  • Cardiomyopathies* / chemically induced
  • Energy Metabolism
  • Iron / metabolism
  • Isoproterenol / metabolism
  • Isoproterenol / toxicity
  • Male
  • Mice
  • Myocardium* / metabolism
  • Rats
  • Rats, Wistar

Substances

  • Isoproterenol
  • Iron