Self-Assembling Anti-Freezing Lamellar Nanostructures in Subzero Temperatures

Adv Sci (Weinh). 2024 Feb 17:e2309020. doi: 10.1002/advs.202309020. Online ahead of print.

Abstract

The requirement for cryogenic supramolecular self-assembly of amphiphiles in subzero environments is a challenging topic. Here, the self-assembly of lamellar lyotropic liquid crystals (LLCs) are presented to a subzero temperature of -70 °C. These lamellar nanostructures are assembled from specifically tailored ultra-long-chain surfactant stearyl diethanolamine (SDA) in water/glycerol binary solvent. As the temperature falls below zero, LLCs with a liquid-crystalline Lα phase, a tilted Lβ phase, and a new folded configuration are obtained consecutively. A comprehensive experimental and computational study is performed to uncover the precise microstructure and formation mechanism. Both the ultra-long alkyl chain and head group of SDA play a crucial role in the formation of lamellar nanostructures. SDA head group is prone to forming hydrogen bonds with water, rather than glycerol. Glycerol cannot penetrate the lipid layer, which mixes with water arranging outside of the lipid bilayer, providing an ideal anti-freezing environment for SDA self-assembly. Based on these nanostructures and the ultra-low freezing point of the system, a series of novel cryogenic materials are created with potential applications in extremely cold environments. These findings would contribute to enriching the theory and research methodology of supramolecular self-assembly in extreme conditions and to developing novel anti-freezing materials.

Keywords: anti-freezing; lamellar nanostructure; lyotropic liquid crystal; subzero temperature; supramolecular self-assembly.