pH-Responsive Amphiphilic Triblock Fluoropolymers as Assemble Oxygen Nanoshuttles for Enhancing PDT against Hypoxic Tumor

Bioconjug Chem. 2024 Mar 20;35(3):400-411. doi: 10.1021/acs.bioconjchem.4c00029. Epub 2024 Feb 17.

Abstract

Photodynamic therapy (PDT) is a cancer treatment strategy that utilizes photosensitizers to convert oxygen within tumors into reactive singlet oxygen (1O2) to lyse tumor cells. Nevertheless, pre-existing tumor hypoxia and oxygen consumption during PDT can lead to an insufficient oxygen supply, potentially reducing the photodynamic efficacy. In response to this issue, we have devised a pH-responsive amphiphilic triblock fluorinated polymer (PDP) using copper-mediated RDRP. This polymer, composed of poly(ethylene glycol) methyl ether acrylate, 2-(diethylamino)ethyl methacrylate, and (perfluorooctyl)ethyl acrylate, self-assembles in an aqueous environment. Oxygen, chlorine e6 (Ce6), and doxorubicin (DOX) can be codelivered efficiently by PDP. The incorporation of perfluorocarbon into the formulation enhances the oxygen-carrying capacity of PDP, consequently extending the lifetime of 1O2. This increased lifetime, in turn, amplifies the PDT effect and escalates the cellular cytotoxicity. Compared with PDT alone, PDP@Ce6-DOX-O2 NPs demonstrated significant inhibition of tumor growth. This study proposes a novel strategy for enhancing the efficacy of PDT.

MeSH terms

  • Cell Line, Tumor
  • Fluorocarbon Polymers
  • Humans
  • Hydrogen-Ion Concentration
  • Hypoxia / drug therapy
  • Nanoparticles*
  • Oxygen
  • Photochemotherapy*
  • Photosensitizing Agents / pharmacology
  • Photosensitizing Agents / therapeutic use
  • Porphyrins*

Substances

  • Fluorocarbon Polymers
  • Oxygen
  • Photosensitizing Agents
  • Porphyrins