Reassessing the transport properties of fluids: A symbolic regression approach

Phys Rev E. 2024 Jan;109(1-2):015105. doi: 10.1103/PhysRevE.109.015105.

Abstract

The viscosity and thermal conductivity coefficients of the Lennard-Jones fluid are extracted through symbolic regression (SR) techniques from data derived from simulations at the atomic scale. This data-oriented approach provides closed form relations that achieve fine accuracy when compared to well-established theoretical, empirical, or approximate equations, fully transparent, with small complexity and high interpretability. The novelty is further outlined by suggesting analytical expressions for estimating fluid transport properties across the whole phase space, from a dilute gas to a dense liquid, by considering only two macroscopic properties (density and temperature). In such expressions, the underlying physical mechanisms are reflected, while, at the same time, it can be a computationally efficient alternative to costly in time and size first principle and/or molecular dynamics simulations.