Hebbian and anti-Hebbian adaptation-induced dynamical states in adaptive networks

Phys Rev E. 2024 Jan;109(1-1):014221. doi: 10.1103/PhysRevE.109.014221.

Abstract

We investigate the interplay of an external forcing and an adaptive network, whose connection weights coevolve with the dynamical states of the phase oscillators. In particular, we consider the Hebbian and anti-Hebbian adaptation mechanisms for the evolution of the connection weights. The Hebbian adaptation manifests several interesting partially synchronized states, such as phase and frequency clusters, bump state, bump frequency phase clusters, and forced entrained clusters, in addition to the completely synchronized and forced entrained states. Anti-Hebbian adaptation facilitates the manifestation of the itinerant chimera characterized by randomly evolving coherent and incoherent domains along with some of the aforementioned dynamical states induced by the Hebbian adaptation. We introduce three distinct measures for the strength of incoherence based on the local standard deviations of the time-averaged frequency and the instantaneous phase of each oscillator, and the time-averaged mean frequency for each bin to corroborate the distinct dynamical states and to demarcate the two parameter phase diagrams. We also arrive at the existence and stability conditions for the forced entrained state using the linear stability analysis, which is found to be consistent with the simulation results.