Choice of DNA extraction method affects stool microbiome recovery and subsequent phenotypic association analyses

Sci Rep. 2024 Feb 16;14(1):3911. doi: 10.1038/s41598-024-54353-w.

Abstract

The lack of standardization in the methods of DNA extraction from fecal samples represents the major source of experimental variation in the microbiome research field. In this study, we aimed to compare the metagenomic profiles and microbiome-phenotype associations obtained by applying two commercially available DNA extraction kits: the AllPrep DNA/RNA Mini Kit (APK) and the QIAamp Fast DNA Stool Mini Kit (FSK). Using metagenomic sequencing data available from 745 paired fecal samples from two independent population cohorts, Lifelines-DEEP (LLD, n = 292) and the 500 Functional Genomics project (500FG, n = 453), we confirmed significant differences in DNA yield and the recovered microbial communities between protocols, with the APK method resulting in a higher DNA concentration and microbial diversity. Further, we observed a massive difference in bacterial relative abundances at species-level between the APK and the FSK protocols, with > 75% of species differentially abundant between protocols in both cohorts. Specifically, comparison with a standard mock community revealed that the APK method provided higher accuracy in the recovery of microbial relative abundances, with the absence of a bead-beating step in the FSK protocol causing an underrepresentation of gram-positive bacteria. This heterogeneity in the recovered microbial composition led to remarkable differences in the association with anthropometric and lifestyle phenotypes. The results of this study further reinforce that the choice of DNA extraction method impacts the metagenomic profile of human gut microbiota and highlight the importance of harmonizing protocols in microbiome studies.

Keywords: DNA extraction; Fecal sample; Gut microbiome; Shotgun metagenomics.

MeSH terms

  • DNA
  • DNA, Bacterial / analysis
  • DNA, Bacterial / genetics
  • Feces / microbiology
  • Gastrointestinal Microbiome* / genetics
  • Humans
  • Metagenomics / methods
  • Microbiota* / genetics
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA

Substances

  • DNA, Bacterial
  • RNA, Ribosomal, 16S
  • DNA